Procedure for Evaluation of the Mark-Houwink Constants

ZBIGNIEW DOBKOWSKI, Institute of Industrial Chemistry, Rydygiera 8, 01-793 Warszawa, Poland

Synopsis

Abstract

An iterative procedure for evaluation of the Mark-Houwink constants, using the GPC universal calibration principle and the extended [η]- M relationship, is described. The procedure is recommended for newly prepared polymers of unknown average molecular weights. An example is given for bisphenol C -2 polycarbonate.

INTRODUCTION

Well-characterized standards of narrow molecular weight distribution (MWD) are hardly available for newly prepared polymers. Therefore, conventional direct methods for determination of K and a constants of the Mark-Houwink equation

$$
\begin{equation*}
[\eta]=K \bar{M}_{v}{ }^{a} \tag{1}
\end{equation*}
$$

where $\left[\eta\right.$] is the intrinsic viscosity and \bar{M}_{v} is the viscosity average molecular weight (M), are not applicable. However, the constants K and a can be evaluated from broad MWD samples, using gel permeation chromatography (GPC) and viscometric (VIS) measurements and the universal calibration principle. Several procedures for this purpose have been described. ${ }^{1-12}$ The two-sample procedure of Weiss and Cohn-Ginsberg ${ }^{1}$ is particularly convenient for a newly prepared polymer, since \bar{M}_{n} and \bar{M}_{w}, and any other specific demands are not required. The application of Weiss-Cohn-Ginsberg procedure reveals, however, that a broad spread of different pairs of K and a values is obtained, although M averages calculated for different $K-a$ pairs are not significantly different. ${ }^{10,12}$ Thus the correct K and a values are arbitrarily chosen ${ }^{3,10}$ or are felt to be suitable. ${ }^{3}$ Recently the relation between K and a in the form of semilogarithmic equation ${ }^{13,14}$

$$
\begin{equation*}
\log K=C-B a \tag{2}
\end{equation*}
$$

where C and B are constants, has been applied to find the reliable $K-a$ pair. ${ }^{12}$ The constants C and B are, however, not known for a newly prepared polymer, since they have to be just calculated from a set of K and a values for several solvents.

In this paper a procedure for evaluation of K and a constants is proposed, where merely GPC data and values of [η] for several samples of any MWD are required. The GPC universal calibration principle ${ }^{15}$ and the three-var-
iable extended [η]- M relationship ${ }^{16}$ are applied, and then the results are treated statistically.

CALCULATION PROCEDURE

The following initial data are required.
(1) Data for the reference polymer:
(a) the reference calibration function in the form of polynomial

$$
\begin{equation*}
\log M=\sum_{k=0}^{n} A_{k} V^{k} \tag{3}
\end{equation*}
$$

where A_{k} represents the coefficients of calibration polynomial and k is the degree of polynomial;
(b) the constants K_{R} and a_{R} of the Mark-Houwink equation, eq.(1), for the reference polymer.
Usually polystyrene (PS) is used as the reference polymer, but any other polymer may be used, if A_{k}, K_{R}, and a_{R} are known.
(2) An initial pair of K_{0} and a_{0} for a new polymer, which can be:
(a) arbitrarily chosen,
(b) taken for theta conditions with $a_{0}=0.5$ and K_{0} calculated from group contributions, ${ }^{13}$ or
(c) taken from any other preliminary data, e.g., obtained from approximate methods described by Ambler ${ }^{3}$ or by Coll and Gilding. ${ }^{17}$
(3) Experimental data for a new linear polymer:
(a) GPC chromatograms for several samples in a GPC solvent, i.e., the function

$$
\begin{equation*}
h_{i}=f\left(V_{i}\right) \tag{4}
\end{equation*}
$$

where h_{i} is the chromatogram height at the elution volume V_{i};
(b) $[\eta]$ for several samples in a GPC solvent;
(c) $[\eta]$ for several samples in any other solvent.
K and a values for a GPC solvent are calculated by the iterative procedure: (4) The viscosity average $M, \bar{M}_{v \mathrm{GPG}}$ and the ratio $q=\bar{M}_{w} / \bar{M}_{n}$ are calculated from GPC data. Thus, the calibration polynomial for a new polymer is calculated, using the reference calibration polynomial, K_{R} and a_{R} for the reference polymer, and K_{0} and a_{0} for a new polymer. The following relation is applied:

$$
\begin{equation*}
\log M=\frac{1}{1+a_{j}} \log \frac{K_{R}}{K_{j}}+\frac{1+a_{R}}{1+a_{j}} \sum_{k=0}^{n} A_{k R} V^{k} \tag{5}
\end{equation*}
$$

where subscript R denotes the reference data and j is the number of the iteration step ($j=0$ for the initial step). The relation given by eq. (5) can easily be derived using the universal calibration principle, ${ }^{15}$ i.e.,

$$
M_{j}[\eta]_{j}=M_{R}[\eta]_{R}
$$

which can be written as

$$
K_{j} M_{j}^{a_{j} j^{+1}}=K_{R} M_{R}^{a_{R}{ }^{a^{+1}}}
$$

since $[\eta]=K M^{\text {a }}$, or in the logarithmic form

$$
\log K_{j}+\left(a_{j}+1\right) \log M_{j}=\log K_{R}+\left(a_{R}+1\right) \log M_{R}
$$

Hence

$$
\log M_{j}=\frac{1}{a_{j}+1} \log \frac{K_{R}}{K_{j}}+\frac{a_{R}+1}{a_{j}+1} \log M_{R}
$$

Substituting eq.(3) for the reference data, we obtain

$$
\begin{equation*}
\log M_{j}=\frac{1}{a_{j}+1} \log \frac{K_{R}}{K_{j}}+\frac{a_{R}+1}{a_{j}+1} \sum_{k=0}^{n} A_{k R} V^{k} \tag{5a}
\end{equation*}
$$

Equation (5a) is commonly used for recalculations of GPC calibration polynomials for different solvents. The M averages are obtained from the known relations

$$
\begin{gather*}
\bar{M}_{n}=1 / \Sigma\left(w_{i} / M_{i}\right) \tag{6a}\\
\bar{M}_{v \mathrm{GPC}}=\left(\sum w_{i} M_{i}^{a}\right)^{1 / a} \tag{6b}\\
\bar{M}_{w}=\Sigma w_{i} M_{i} \tag{6c}
\end{gather*}
$$

(5) A new pair of K_{j} and a_{j} values is calculated from the experimental [η] values for a GPC solvent and obtained $\bar{M}_{v \text { GPC }}$ values, using the extended $[\eta]-M$ relationship ${ }^{16}$ written as

$$
\begin{equation*}
[\eta]=K \bar{M}_{x}^{a} q^{a}{ }_{p x} \tag{7}
\end{equation*}
$$

where subscript x denotes the type of M average, i.e., the number $(x=n)$, viscosity ($x=v$), or weight ($x=w$) averages, respectively, $q=\bar{M}_{w} / \bar{M}_{n}$ is the polydispersity degree, and $a_{p x}$ is the polydispersity exponent. Thus, for $\bar{M}_{x}=\bar{M}_{v \mathrm{GPC}(j-1)}$ and $q=q_{j-1}$, constants $K=K_{j}, a=a_{j}$ and $a_{p x}=a_{p v j}$ are obtained. K_{j} and a_{j} values are immediately used in the next iteration step instead of the previous K_{j-1}, a_{j-1} pair. K_{j-1} and a_{j-1} values are applied as the reference data for calculation of a new calibration polynomial in the j th iteration step. The iterative procedure is repeated until $K_{j}=K_{j-1}$ and $a_{j}=a_{j-1}$ is obtained for $j=N$ within an assumed accuracy, i.e.,

$$
\begin{equation*}
\left|K_{j}-K_{j-1}\right| \leqslant \delta_{0} \tag{8a}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{j}-a_{j-1}\right| \leqslant \delta_{1} \tag{8b}
\end{equation*}
$$

where δ_{0} and δ_{1} are the required differences between the calculated values of K and a, respectively.
(6) The auxiliary data are calculated at each iteration step:
(a) the viscosity average $M, \bar{M}_{u \mathrm{VIS}}$, for all samples considered, using eq. (1), K_{j}, a_{j}, and [η] in a GPC solvent;
(b) the ratio

$$
\begin{equation*}
g_{v}=\bar{M}_{v \mathrm{GPC}} / \bar{M}_{v \mathrm{VIS}} \tag{9}
\end{equation*}
$$

for each sample, and the mean value of g_{v}, \bar{g}_{v}, standard deviation σ and variation coefficient $s=\sigma / \bar{g}_{v} 100 \%$. If the convergence conditions, eqs. (8), are satisfied, the final K_{N} and a_{N} values are checked by the polydispersity exponent $\alpha_{p v}$ of the [η]- M relationship, eq. (7), (cf. also Ref. 16) and by the mean value of g_{v}. Since $a_{p v}$ and \bar{g}_{v} should be equal to zero and unity, respectively, the following reliability conditions can be written:

$$
\begin{equation*}
\left|a_{p v N}\right| \leqslant \delta_{2} \tag{10a}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\bar{g}_{v}-1\right| \leqslant \delta_{3} \tag{10b}
\end{equation*}
$$

where δ_{2} and δ_{3} are the required differences between the calculated and theoretical values of $a_{p v}$ and \bar{g}_{v}, respectively. The polydispersity exponent of eq. (7) is given by the relation

$$
a_{p x}=0.5 a(a-\epsilon)
$$

for \log-normal MWD, where ϵ is the exponent of M in the integral form of average \bar{M}_{x} definition

$$
\bar{M}_{x}^{\epsilon}=\int_{0}^{\infty} M^{\epsilon} w(M) d M
$$

For \bar{M}_{v} we have $\epsilon=a$; therefore, $a_{p v}=0$ (cf. Ref. 16). Also, for other types of MWD the polydispersity exponent for $\bar{M}_{v}, a_{p v}$ is equal to zero. The ratio g_{v}, given by eq. (9), is equal to unity for linear polymers, since $\bar{M}_{v \mathrm{GPC}}=$ $\bar{M}_{v \mathrm{VIS}}$ for linear polymers (cf. also Refs. 16 and 18).

If the reliability conditions, eqs. (10), are satisfied, the obtained K_{N} and a_{N} constants are correct, as well as the coefficients $A_{k N}$ of GPC calibration polynomial. Otherwise, the experimental data should be reconsidered. The correction of calibration polynomial in the range of low M^{21} should also be considered.
The iteration procedure is shown in Figure 1 in the form of flow sheet convenient for computer programming.

Fig. 1. Flow sheet for simultaneous calculation of K and a constants and coefficients A_{k} of GPC calibration polynomial.
(7) K and a values for a non-GPC solvent. Once the GPC calibration polynomial is established for a GPC solvent, [η] data for any other solvent can be combined with \bar{M}_{w} and q values from GPC, using eq. (7). Thus obtained K and a constants are checked again with eq. (7) using $\bar{M}_{\nu \mathrm{GPC}}$ for a given value of a, and with eqs. (8) and (10).

EXPERIMENTAL

Bisphenol C-2 polycarbonate (CPC), i.e., polycarbonate from 1,1-dichloro-2,2-bis(4-hydroxyphenyl) ethylene of the formula

was used as a new polymer. CPC was prepared in our Institute by the interfacial polycondensation method ${ }^{19}$ and then fractionated. Ten fractions of linear CPC* were characterized by their GPC chromatograms and [η] values obtained at $25^{\circ} \mathrm{C}$ in tetrahydrofuran (THF) as a GPC solvent, as well as by [η] values measured at $25^{\circ} \mathrm{C}$ in chloroform and in methylene chloride. A Waters Associate Model 200 Chromatograph and a Hewlett-Packard Model 5901B Autoviscometer were used for GPC/VIS measurements, respectively. Both $\eta_{\mathrm{sp}} / c=f(c)$ and $\ln \eta_{r} / c=f(c)$ relationships were used for evaluation of $[\eta]$ at $c=0$ by linear regression equations, where c is the concentration of CPC in solution ranging from 0.004 to $0.012 \mathrm{~g} / \mathrm{cm}^{3}$. Then the mean values of [η] were calculated (shown in Table I) with maximum errors not exceeding $\pm 1.63 \%$. Calculations were performed in parts, using a Hewlett-Packard Model 9810A Calculator with statistical and special GPC programs. Bisphenol A polycarbonate (APC) was used as the reference polymer with $K_{R}=3.89 \times 10^{-2} \mathrm{~cm}^{3} / \mathrm{g}$ and $a_{R}=0.70$ for THF. ${ }^{18,20}$ The fourth degree calibration polynomial was earlier checked and corrected in the range of low M for APC-THF GPC system. ${ }^{18,21}$

RESULTS AND DISCUSSION

Results of GPC/VIS measurements are shown in Table I and Figure 2. A linear plot of $[\eta]$ vs. $V_{\max }$, where $V_{\max }$ is the elution volume corresponding to the maximum chromatogram height, is obtained for each solvent in the considered ranges of [η]. It can serve as an additional verification of $[\eta]$ measurements. The sequence of $[\eta]$ results, i.e., $[\eta]_{\mathrm{THF}}>[\eta]_{\mathrm{CHCl}_{3}}>$ $[\eta]_{\mathrm{CH}_{2} \mathrm{Cl}_{2}}$, is the same as for 85/15 CPC/APC copolymer. ${ }^{22}$ Data for APC in THF are also included in Figure 2 for comparison. Chromatograms of all CPC fractions were unimodal, without low M or high M tails.

[^0]TABLE I
GPC/VIS Measurements of Polycarbonate Samples

| | | $\begin{array}{c}\text { GPC } \\ \text { Sample } \\ \text { measurements }\end{array}$ | | $\begin{array}{c}\text { Intrinsic viscosity }[\nu]\left(\mathrm{cm}^{3} / \mathrm{g}\right) \text { at } 25^{\circ} \mathrm{C} \\$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | |
| no. \end{array} | $V_{\text {max }}$ (counts) | | | |$)$

Fig. 2. Intrinsic viscosity [η] vs. elution volume of chromatogram peak $V_{\max }:(\odot)$ CPC-THF; (\otimes) $\mathrm{CPC}-\mathrm{CHCl}_{3} ;(\oplus) \mathrm{CPC}-\mathrm{CH}_{2} \mathrm{Cl}_{2} ;(\oplus) \mathrm{APC}-\mathrm{THF}$ systems.

Two runs of calculations, according to the above-described iterative procedure, have been performed: (A) with the initial $K_{0}=3.89 \times 10^{-2} \mathrm{~cm}^{3} / \mathrm{g}$ and $a_{0}=0.70$ for CPC in THF, taken according to the point ($2 a$) of the calculation procedure. Thus K_{0} and a_{0} are assumed to be the same as K and a for APC-THF system ${ }^{18,20}$; (B) with the initial $K_{0}=17.75 \times 10^{-2} \mathrm{~cm}^{3} /$ g and $a_{0}=0.50$ for CPC in THF. Thus theta conditions are assumed, according to the point ($2 b$) of the calculation procedure, where K_{0} is calculated from group contributions. ${ }^{13}$ The following criteria were assumed: $\delta_{0}=10^{-4} \mathrm{~cm}^{3} / \mathrm{g}$ and $\delta_{1}=10^{-3}$ for convergence, eqs. (8), and $\delta_{2}=0.03$ and $\delta_{3}=0.02$ for reliability, eqs. (10). As a result of the iterative procedure, similar K_{N} and a_{N} values have been obtained in both runs A and B (see Table II). The criteria for the coefficients of polydispersity in eq. (7), $a_{\text {pnN }}$ >0 and $a_{p w N} \leqslant 0$ (cf. Refs. 16 and 23) are satisfied and indicate the lognormal MWD of CPC fractions (Table II). The convergence of the procedure is shown in Figure 3. Thus, four to eight iteration steps are needed, depending on the assumed initial K_{0} and a_{0} values, i.e., depending on the difference between assumed and expected K and a values, respectively. Coefficients $A_{k N}$ of GPC calibration polynomial have simultaneously been obtained for CPC-THF system (see Fig. 1 and Table III). Therefore, the mean values of $K_{N}=4.40 \times 10^{-2} \mathrm{~cm}^{3} / \mathrm{g}$ and $a_{N}=0.673$ for CPC in THF at $25^{\circ} \mathrm{C}$ have been obtained from $\bar{M}_{v \mathrm{GPC}}$ data (Table II), as well as the mean values of $A_{k N}$ (Table III), within maximum errors of $0.71 \%, 0.15 \%$, and 0.03%, respectively. Then the molecular characteristics of CPC samples have also been obtained (see Table IV). The range of \bar{M}_{w} from 10^{4} to $4.3 \times$ $10^{4} \mathrm{~g} / \mathrm{mol}$ is relatively narrow one, but it covers the M of CPC used for injection moulding materials. K and a values for chloroform and methylene chloride at $25^{\circ} \mathrm{C}$ have been obtained from eq. (7), using the measured values of $[\eta]$ (Table I) and the values of \bar{M}_{w} from Table IV. Then the results have been verified with $\bar{M}_{\nu \mathrm{GPC}}$ for a given value of a. Thus we have $K=3.84 \times$ $10^{-2} \mathrm{~cm}^{3} / \mathrm{g}$ and $a=0.672$ for chloroform at $25^{\circ} \mathrm{C}$, and $K=4.50 \times 10^{-2}$ $\mathrm{cm}^{3} / \mathrm{g}$ and $a=0.651$ for methylene chloride at $25^{\circ} \mathrm{C}$. The coefficients of eq.
TABLE II
Final Results of Calculations for CPC in THF: Coefficients of Three-Variable [η]- M Relationship

	For $\bar{M}_{u, \mathrm{GPC}}$			For \bar{M}_{n}				For \bar{M}_{w}		
	$\begin{gathered} K_{N} \times 10^{2} \\ \left(\mathrm{~cm}^{3} / \mathrm{g}\right) \end{gathered}$	a_{N}	$a_{p o N}$	$\overline{\mathrm{g}}_{v}$	$\begin{gathered} K_{N} \times 10^{2} \\ \left(\mathrm{~cm}^{3} / \mathrm{g}\right) \end{gathered}$	a_{N}	$a_{p n N}$	$\begin{gathered} K_{N} \times 10^{2} \\ \left(\mathrm{~cm}^{3} / \mathrm{g}\right) \end{gathered}$	a_{N}	$a_{\text {pu }}$
Run A: $N=4$	4.366	0.673	-0.027	1.019	4.412	0.671	0.567	4.356	0.672	-0.106
Run B: $N=8$	4.427	0.672	-0.028	1.014	4.350	0.673	0.566	4.425	0.671	-0.101
Mean values	4.397	0.673	-0.028	1.017	4.381	0.672	0.567	4.391	0.672	-0.104
Max. relative error (\%)	0.71	0.15	3.57	0.29	0.71	0.15	0.18	0.80	0.15	2.88
Theoretical values, for log. normal MWD ${ }^{\text {a }}$			0	1			0.562			-0.110
Difference			-0.028	0.017			0.005			0.006
Relative error (\%)			-2.8	1.7			0.9			5.5

[^1]

Fig. 3. Convergence of iterative procedure for constants K and a : (A) run A; (B) run B; (e) for values of $a ;(x)$ for values of K.
(7) obtained from $\bar{M}_{v \mathrm{GPC}}$ data are compared with those obtained from \bar{M}_{n} and \bar{M}_{w} (see Table V). It is evident that they agree with each other, respectively.

Other data on K and a values for CPC are not available from the published papers. As a matter of fact, Factor and Orlando ${ }^{22}$ reported [η] measurements of $85 / 15 \mathrm{CPC} / \mathrm{APC}$ copolymer; however, their values of $K=3.34 \times 10^{-4}$ $\mathrm{cm}^{3} / \mathrm{g}$ and $a=1.22$ for the copolymer seem to be unreliable (their result is based on \bar{M}_{n} which is not recommended for determination of K and $a,{ }^{24}$ and only three samples were taken for the regression equation). Studies of Dems on K and a of CPC were not published in details; only $K=9.83 \times$ $10^{-2} \mathrm{~cm}^{3} / \mathrm{g}$ and $a=0.614$ for $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $20^{\circ} \mathrm{C}$ were mentioned. ${ }^{25}$ Differences from our values for $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $25^{\circ} \mathrm{C}$ are too high to be explained only by the difference in temperature of measurements.

The reliability of our results depends, of course, on the measurements of [η] and on GPC data. We offer, however, the reasonable means for verification both [η] and GPC measurements. They are $a_{p v}=0$ for eq. (7) (cf. Refs. 16 and 23), $g_{v}=1$ for each linear sample (cf. Refs. 16,18,23), and $\bar{g}_{v}=1$ for a set of linear samples (this work).

TABLE III
Final Results of Calculations for CPC in THF: Coefficients of Fourth Degree Calibration Polynominal

	$A_{0} \times 10^{-1}$	$A_{1} \times 10^{0} *$	$A_{2} \times 10$	$A_{3} \times 10^{3}$	$A_{4} \times 10^{5}$
Run A: $N=4$	5.6301	-5.1641	2.0305	-3.7406	2.6360
Run B: $N=8$	5.6328	-5.1672	2.0317	-3.7428	2.6376
Mean values	5.6315	-5.1657	2.0311	-3.7417	2.6368
Relative error (\%)	0.025	0.031	0.030	0.029	0.030

TABLE IV
Molecular Characteristics of CPC Samples

Sample					THF		CHCl_{3}		$\mathrm{CH}_{2} \mathrm{Cl}_{2}$
no.	\bar{M}_{n}	\bar{M}_{w}	$q=\bar{M}_{u} / \bar{M}_{n}$	$\bar{M}_{\text {ivis }}$	$g_{v}=\bar{M}_{u}, \mathrm{GPC} / \bar{M}_{v \mathrm{VlS}}$	$\bar{M}_{u \mathrm{VIS}}$	$g_{v}=\bar{M}_{v \mathrm{GPC}} / \bar{M}_{v \mathrm{viS}}$	$\bar{M}_{\text {tivis }}$	$\mathrm{g}_{u}=\bar{M}_{v \mathrm{GPC}} / \bar{M}_{v \mathrm{viS}}$
1	8212	10470	1.27	10035	1.01	-	-	-	-
2	12095	14941	1.24	14037	1.03	14383	1.00	14569	0.99
3	14551	18160	1.25	17211	1.02	17150	1.02	17061	1.02
4	15160	21831	1.44	20503	1.01	21079	0.98	21212	0.97
5	17461	22533	1.29	20590	1.05	22620	0.96	-	-
6	18872	23472	1.24	22980	0.99	23456	0.97	23805	0.95
7	20487	28400	1.39	26297	1.03	27560	0.98	-	-
8	24259	32424	1.34	30643	1.01	30835	1.01	-	-
9	29782	40437	1.36	38141	1.01	38600	1.00	38519	1.00
10	30548	43089	1.41	39962	1.03	-	-	41552	0.98
Mean value of g_{v}, \bar{g}_{v}					1.02		0.99		0.99
Standard deviation $\boldsymbol{\sigma}$					0.0166		0.0207		0.0243
					1.63		2.09		2.45

Note: the values of $\bar{M}_{w V 1 S}$ were calculated from eq. (1), using $K=4.40 \times 10^{-2} \mathrm{~cm}^{3} / \mathrm{g}$ and $a=0.673, K=3.84 \times 10^{-2} \mathrm{~cm}^{3} / \mathrm{g}$ and $a=0.672$, and $K=4.50$ $\times 10^{-2} \mathrm{~cm}^{3} / \mathrm{g}$ and $a=0.651$ obtained at $25^{\circ} \mathrm{C}$ for THF, CHCl_{3}, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, respectively (this work).

TABLE V
Coefficients of Three-Variable [$\boldsymbol{\eta}]-M$ Relationship for CPC

Solvent	Temperature ($\left.{ }^{\circ} \mathrm{C}\right)$	Coefficients	Values of coefficients for different \bar{M}_{x} from GPC measurements			Mean values	Max. relative error (\%)
			For $\bar{M}_{r \mathrm{GPC}}$ (basic)	For \bar{M}_{n}	For \bar{M}_{w}		
THF	25	$K_{N} \times 10^{2}\left(\mathrm{~cm}^{3} / \mathrm{g}\right)$	4.40	4.38	4.39	4.39	0.23
		a_{N}	0.673	0.672	0.672	0.672	0.15
		$a_{p x N}$	-0.028	0.567	-0.104	-	-
		correlation r^{2}	0.9985	0.9984	0.9985	-	-
CHCl_{3}	25	$K_{N} \times 10^{2}\left(\mathrm{~cm}^{3} / \mathrm{g}\right)$	3.84	3.80	3.81	3.82	0.52
		a_{N}	0.672	0.673	0.672	0.672	0.15
		$\mathrm{a}_{p x N}$	0.020	0.611	-0.057	-	-
		correlation r^{2}	0.9954	0.9945	0.9952	-	-
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	25	$K_{N} \times 10^{2}\left(\mathrm{~cm}^{3} / \mathrm{g}\right)$	4.50	4.39	4.44	4.44	1.35
		a_{N}	0.651	0.653	0.652	0.652	0.15
		$a_{p x N}$	0.020	0.588	-0.064	-	-
		correlation. r^{2}	0.9966	0.9960	0.9965	-	一

CONCLUSIONS

The described iterative procedure, based on the three-variable [η]-M relationship, offers reliable values of K and a constants of the Mark-Houwink equation and simultaneously the GPC calibration for polymer samples of unknown M averages. Merely GPC chromatograms and [η] measurements are needed for several samples. Experimental errors of GPC/VIS measurements can be estimated by the statistical treatment of data.

The criterion of reliability of K and a values is $a_{p v N}=0$; the calculated value of $a_{p v N} \times 100$, i.e., the deviation from $a_{p v N}=0$, can be used as a measure of this reliability.

The criterion of reliability of GPC calibration is $\bar{g}_{v}=1$ for a GPC solvent, as well as for other solvents; the variation coefficient $s=100 \sigma / \bar{g}_{v}$ is a measure of this reliability.

The described procedure has been applied to bisphenol C-2 polycarbonate (CPC) and the following values of K and a at $25^{\circ} \mathrm{C}$ have been obtained:
$K=4.40 \times 10^{-2} \mathrm{~cm}^{3} / \mathrm{g} \quad$ and $\quad a=0.673$ for THF $K=3.84 \times 10^{-2} \mathrm{~cm}^{3} / \mathrm{g} \quad$ and $\quad a=0.672 \quad$ for chloroform $K=4.50 \times 10^{-2} \mathrm{~cm}^{3} / \mathrm{g} \quad$ and $\quad a=0.651 \quad$ for methylene chloride

The reliability measures are $a_{p v N} \times 100$ equal to $2.8 \%, 2.0 \%$, and 2.0%, and the variation coefficient s equal to $1.63 \%, 2.09 \%$, and 2.37% for THF, chloroform, and methylene chloride, respectively.

References

1. A. R. Weiss and E. Cohn-Ginsberg, J. Polym. Sci. B, 7, 379 (1969).
2. B. G. Belenkii and P. P. Nefedov, Vysokomol. Soed. A, 14, 1658 (1972).
3. M. R. Ambler, J. Polym. Sci., Polym. Chem. Ed., 11, 191 (1973).
4. A. L. Spatorico and B. Coulter, J. Polym. Sci., Polym. Phys. Ed. 11, 1139 (1973).
5. Y. Kato, T. Takamatsu, M. Fukutomi, M. Fukuda, and T. Hashimoto, J. Appl. Polym. Sci., 21, 577 (1977).
6. H. K. Mahabadi and K. F. O'Driscoll, J. Appl. Polym. Sci., 21, 1283 (1977).
7. W. S. Park and W. W. Greassley, J. Polym. Sci., Polym. Phys. Ed., 15, 71 (1977).
8. F. Cane and T. Capaccioli, Eur. Polym. J., 14, 185 (1977).
9. G. Samay, M. Kubin, and J. Podešva, Angew. Makromol. Chem., 72, 185 (1978).
10. C. J. B. Dobbin, A. Rudin, and M. F. Tchir, J. Appl. Polym. Sci., 25, 2985 (1980).
11. P. Szewczyk, J. Appl. Polym. Sci., 26, 2727 (1981).
12. M. Szesztay and F. Tüdös, Polym. Bull., 5, 429 (1981).
13. D. W. Van Krevelen, Properties of Polymers, North-Holland, Amsterdam, 1976.
14. S. M. Aharoni, J. Appl. Polym. Sci., 21, 1323 (1977).
15. Z. Grubisic, P. Rempp, and H. Benoit, J. Polym. Sci., Polym. Lett. Ed., 5, 753 (1967).
16. Z. Dobkowski, Eur. Polym. J., 17, 1131 (1981).
17. H. Coll and D. K. Gilding, J. Polym. Sci., A-2, 8, 89 (1970).
18. Z. Dobkowski and J. Brzeziński, Eur. Polym. J., 17, 537 (1981).
19. S. Porejko and Z. Wielgosz, Polimery, 16, 495 (1971).
20. G. Sitaramaiah, J. Polym. Sci. A, 3, 2743 (1965).
21. J. Brzeziński and Z. Dobkowski, Eur. Polym. J., 16, 85 (1980).
22. A. Factor and C. M. Orlando, J. Polym. Sci., Polym. Chem. Ed., 18, 579 (1980).
23. Z. Dobkowski, J. Appl. Polym. Sci., 28, 3105 (1983).
24. M. Kurata, Y. Tsunashima, M. Iwama, and K. Kamada, in Polymer Handbook, J. Brandrup and H. Immergut, Eds., Wiley-Interscience, New York, 1975, Chap. IV.
25. A. Dems, IUPAC International Symposium on Macromolecular Chemistry, Tashkent, October 17-21, 1978; Abstracts of Short Commun., 5, 179 (1978).

Received June 16, 1983
Accepted November 29, 1983
Corrected proofs received July 2, 1984

[^0]: * Fractions of CPC were prepared by Dr. A. Dems, Institute of Synthetic Fibres, Technical University of Lód'z, Poland, and kindly supplied to the author.

[^1]: ${ }^{\text {a }}$ Calculated for $a_{N}=0.672$ from relations $a_{p n N}=0.5 a_{N}\left(a_{N}+1\right)$ and $a_{p u N_{N}}=0.5 a_{N}\left(a_{N}-1\right)$. Cf. Ref. 16; see also text following eq. (10b).

